Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-23820
Cell 1992 Apr 17;692:283-94.
Show Gene links Show Anatomy links

Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes.

Lechleiter JD , Clapham DE .


???displayArticle.abstract???
Following receptor activation in Xenopus oocytes, spiral waves of intracellular Ca2+ release were observed. We have identified key molecular elements in the pathway that give rise to Ca2+ excitability. The patterns of Ca2+ release produced by GTP-gamma-S and by inositol 1,4,5-trisphosphate (IP3) are indistinguishable from receptor-induced Ca2+ patterns. The regenerative Ca2+ activity is critically dependent on the presence of IP3 and on the concentration of intracellular Ca2+, but is independent of extracellular Ca2+. Broad regions of the intracellular milieu can be synchronously excited to initiate Ca2+ waves and produce pulsating foci of Ca2+ release. By testing the temperature dependence of wavefront propagation, we provide evidence for an underlying process limited by diffusion, consistent with the elementary theory of excitable media. We propose a model for intracellular Ca2+ signaling in which wave propagation is controlled by IP3-mediated Ca2+ release from internal stores, but is modulated by the cytoplasmic concentration and diffusion of Ca2+.

???displayArticle.pubmedLink??? 1568248
???displayArticle.link??? Cell