Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24097
J Biol Chem 1992 Jan 05;2671:577-85.
Show Gene links Show Anatomy links

Processing, intracellular transport, and functional expression of endogenous and exogenous alpha-beta 3 Na,K-ATPase complexes in Xenopus oocytes.

Jaunin P , Horisberger JD , Richter K , Good PJ , Rossier BC , Geering K .


???displayArticle.abstract???
The minimal functional Na,K-ATPase unit is composed of a catalytic alpha-subunit and a glycosylated beta-subunit. So far three putative beta-isoforms have been described, but only beta 1-isoforms have been identified clearly as part of a purified active enzyme complex. In this study we provide evidence that a putative beta 3-isoform might be the functional component of Xenopus oocyte Na,K-ATPase. beta 3-isoforms are expressed in the oocyte plasma membrane together with alpha-subunits, but beta 3-isoforms are synthesized to a lesser extent than alpha-subunits. The unassembled oocyte alpha-subunits accumulate in an immature trypsin-sensitive form most likely in the endoplasmic reticulum (ER). Injection of both beta 1- and beta 3-cRNA into oocytes abolishes the transport constraint of the oocyte alpha-subunit, renders it trypsin-resistant, and finally leads to an increased number of functional pumps at the plasma membrane. In addition, beta 3-isoforms as beta 1-isoforms depend on the concomitant synthesis of alpha-subunits to be able to leave the ER and to become fully glycosylated. Finally, alpha-beta 1 and alpha-beta 3 complexes expressed at the plasma membrane appear to have similar transport properties as assessed by ouabain binding, rubidium uptake, and electrophysiological measurements in oocytes coexpressing exogenous alpha 1- and beta 1- or beta 3-isoforms. Thus our data indicate that beta 3-isoforms have functional qualities similar to beta 1-isoforms. They can assemble and impose a structural reorganization to newly synthesized alpha-subunits which permits the exit from the ER and the expression of functional Na,K-pumps at the plasma membrane.

???displayArticle.pubmedLink??? 1309755
???displayArticle.link??? J Biol Chem


Species referenced: Xenopus
Genes referenced: atp1a1 prss1