Due to necessary maintenance, Xenbase will be unavailable from December 24-29, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-246
Brain Res. June 13, 2006; 1094 (1): 1-12.

Differential characterization of three alternative spliced isoforms of DPPX.

Nadal MS , Amarillo Y , Vega-Saenz de Miera E , Rudy B .


Abstract
Transient subthreshold-activating somato-dendritic A-type K(+) currents (I(SA)s) have fundamental roles in neuronal function. They cause delayed excitation, influence spike repolarization, modulate the frequency of repetitive firing, and have important roles in signal processing in dendrites. We previously reported that DPPX proteins are key components of the channels mediating these currents (Kv4 channels) (Nadal, M.S., Ozaita, A., Amarillo, Y., Vega-Saenz, E., Ma, Y., Mo, W., Goldberg, E.M., Misumi, Y., Ikehara, Y., Neubert, T.A., Rudy, B., 2003. The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37, 449-461). The DPPX gene encodes alternatively spliced transcripts that generate single-spanning transmembrane proteins with a short, divergent intracellular domain and a large extracellular domain. We characterized the modulatory effects on Kv4.2-mediated currents and the rat brain distribution of three splice variants of the DPPX subfamily of proteins. These three splice isoforms--DPPX-S, DPPX-L, and DPPX-K--are expressed in adult rat brain and modify the voltage dependence and kinetic properties of Kv4.2 channels expressed in Xenopus oocytes. Analysis of a deletion mutant that lacks the variable N-terminus showed that the N-terminus is not necessary for the modulation of Kv4 channels. Using in situ hybridization analysis, we found that the three splice variants are prominently expressed in brain regions where Kv4 subunits are also expressed. DPPX-K and DPPX-S mRNAs have a widespread distribution, whereas DPPX-L transcripts are concentrated in few specific areas of the rat brain. The emerging diversity of DPPX splice variants, differing only in the N-terminus of the protein, opens up intriguing possibilities for the modulation of Kv4 channels.

PubMed ID: 16764835
Article link: Brain Res.
Grant support: NS045217 NINDS NIH HHS , NS30989 NINDS NIH HHS

Genes referenced: act3 dpp6 kcnd2
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556