Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24905
Cell April 19, 1991; 65 (2): 209-17.

Assembly/disassembly of the nuclear envelope membrane: cell cycle-dependent binding of nuclear membrane vesicles to chromatin in vitro.

Pfaller R , Smythe C , Newport JW .


Abstract
Dissociation and association of membranes with chromatin at the beginning and end of mitosis are critical in controlling nuclear dynamics during these stages of the cell cycle. Employing purified membrane and cytosolic fractions from Xenopus eggs, a simple assay was developed for the reversible binding of nuclear membrane vesicles to chromatin. We have shown, using phosphatase and kinase inhibitors, that membrane-chromatin association is regulated by a phosphatase/kinase system. In interphase, the balance in this system favors dephosphorylation, possibly of a membrane receptor, which then mediates chromatin binding. At mitosis the membrane receptor is phosphorylated, causing release of chromatin-bound membrane. Purified MPF kinase does not directly cause membranes to dissociate from chromatin. Rather, binding of membranes to chromatin at mitosis appears to be regulated indirectly by MPF through its action on a phosphatase/kinase system that directly modulates the phosphorylation state of a nuclear membrane component.

PubMed ID: 1849796
Article link: Cell
Grant support: [+]