Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25140
Biochem Biophys Res Commun January 15, 1991; 174 (1): 1-5.

Inhibition of ras-induced germinal vesicle breakdown in Xenopus oocytes by rap-1B.

Campa MJ , Chang KJ , Molina y Vedia L , Reep BR , Lapetina EG .


Abstract
A cDNA clone (Krev-1) has recently been identified that possesses the ability to reverse the transformed phenotype when introduced into a K-ras-transformed NIH/3T3 cell line. The Krev-1 protein, also known as rap-1A, was found to share 50% homology with the ras proteins. The rap-1A protein has also been shown to block the interaction of ras with its GTPase activating protein in vitro, leading to speculation regarding its role in vivo. A closely related protein, rap-1B, has also been identified in platelets, human erythroleukemia cells, neutrophils, and aortic smooth muscle cells. Unlike rap-1A, rap-1B has been shown to be phosphorylated in platelets. Given the high degree of similarity between the amino acid sequences of rap-1A and rap-1B, we sought to investigate the effect of microinjected rap-1B on H-ras(Val12)-induced germinal vesicle breakdown in Xenopus laevis oocytes. In this assay system, equimolar concentrations of rap-1B were found to block germinal vesicle breakdown triggered by the oncogenic ras protein. However, in the presence of IGF-1, this inhibition was not observed. Moreover, rap-1B is readily phosphorylated in the oocytes.

PubMed ID: 1899188
Article link: Biochem Biophys Res Commun


Species referenced: Xenopus laevis
Genes referenced: rap2a