Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Development October 1, 1989; 107 (2): 229-41.

Mesoderm-inducing factors and Spemann''s organiser phenomenon in amphibian development.

Cooke J .

Certain proteins from ''growth factor'' families can initiate mesodermal development in animal cap cells of the amphibian blastula. Cells that are in early stages of their response to one such factor, XTC-MIF (Smith et al. 1988), initiate the formation of a new axial body plan when grafted to the ventral marginal zone of a similarly aged host embryo (Cooke et al. 1987). This replicates the natural control of this phase of development by the dorsal blastoporal lip when similarly grafted; the classical ''organiser'' phenomenon. I have explored systematically the effect, upon the outcome of this pattern formation using defined inducing factors, of varying graft size, XTC-MIF concentration to which graft cells were exposed, length of exposure before grafting, and host age. The ''mesodermal organiser'' status, evoked by the factor, appears to be stable, and the variables most influencing the degree of completeness and orderliness of second patterns are graft size and factor concentration. Inappropriately large grafts are not effective. A Xenopus basic fibroblast growth factor homologue, present in the embryo and known to be a strong inducer but of mesoderm with a different character from that induced by XTC-MIF, produced no episode of pattern formation at all when tested in the procedure described in this paper. Organiser status of grafts that have been exposed to mixtures of the two factors is set entirely by the supplied XTC-MIF concentration. Lineage labelling of these grafts, and of classical dorsal lip grafts, reveals closely similar though not identical patterns of contribution to the new structure within the host. Implications of the results for the normal mechanism of body pattern formation are discussed.

PubMed ID: 2632222
Article link: Development

Genes referenced: mif tbx2

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.12.2

Major funding for Xenbase is provided by grant P41 HD064556