Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-2657
Biomaterials 2005 May 01;2614:1895-903. doi: 10.1016/j.biomaterials.2004.06.007.
Show Gene links Show Anatomy links

Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment.

Vu TQ , Chowdhury S , Muni NJ , Qian H , Standaert RF , Pepperberg DR .


???displayArticle.abstract???
The derivatization of surfaces with bioactive molecules is a research area of growing importance for cell and tissue engineering. Tetherable molecules used in such applications must contain an anchoring moiety as well as the biofunctional group, typically along with a spacer to prevent steric clashes between the target molecule and the tethering surface. Post-synaptic membrane receptors at chemical synapses in neural tissue mediate signaling to the post-synaptic neuron and are activated by the binding of diffusible neurotransmitter molecules released by the pre-synaptic neuron. However, little attention has been directed at developing neurotransmitter analogs that might retain functionality when tethered to a surface that could be interfaced with post-synaptic receptor proteins. Muscimol (5-aminomethyl-3-hydroxyisoxazole), an analog of GABA (gamma-aminobutryic acid), is a known potent agonist of GABA(A) and GABA(C) post-synaptic receptors found in retina and other central nervous system tissue. The present paper reports experiments testing the electrophysiological activity of "muscimol-biotin" on cloned GABA receptors expressed in Xenopus oocytes. This compound, which is potentially suitable for tethering at avidin-coated surfaces, consists of muscimol conjugated through an N-acyl linkage to a 6-aminohexanoyl chain that is distally terminated by biotin. We find that muscimol-biotin, as well as a structurally similar compound (muscimol-BODIPY) containing a bulky fluorophore at the distal end of the aminohexanoyl chain, exhibits substantial agonist activity at GABA(A) and GABA(C) receptors. Muscimol-biotin and other similarly biotinylated neurotransmitter analogs, in combination with surface functionalization using avidin-biotin technology, may be useful in applications involving the controlled activation of neuronal post-synaptic receptors by surface-attached molecules.

???displayArticle.pubmedLink??? 15576163
???displayArticle.link??? Biomaterials
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: avd