Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-27837
Dev Biol December 1, 1987; 124 (2): 316-30.
Show Gene links Show Anatomy links

Healing modes correlate with visuotectal pattern formation in regenerating embryonic Xenopus retina.

Ide CF , Wunsh LM , Lecat PJ , Kahn D , Noelke EL .


Abstract
After removal of the nasal or the temporal two-thirds of the embryonic (stage 32) eye, the remaining one-third sized fragment undergoes wound healing and then, in most cases, regenerates to form a new eye. Using gross anatomy and histology techniques, we categorized eye fragments into three healing mode categories over the first 24 hr after surgery (stage 37-38). Representative animals were reared through metamorphosis and their visuotectal projections were assayed using standard electrophysiology techniques. In the "rounded-up" healing mode, the cut edges of the fragment pinch to close the wound; retinal cell type layers (pigmented retinal epithelium (pre), photoreceptors, interneurons, ganglion cells) and a lens are present by 24 hr postsurgery. No extraneous or disorganized cells are present either internal or external to the fragments. These fragments regenerated to form normal projections 83% of the time and pattern duplicated projections only 17% of the time. In the "intermediate" healing mode, wound closure is not complete by 24 hr post surgery and groups of disorganized cells are present in the fragment and amassed between the healing cut edges. These fragments formed pattern duplicated projections 72% of the time. In the tongue healing mode, an ectopic mass of cells, contiguous with the main body of the fragment, forms a supernumerary retina in the region of the ablation. At 24 hr post surgery, the cells of the main body fragment form retinal layers; the cells of the tongue, excluding the presence of differentiated pre cells, remain undifferentiated, resembling ciliary margin. The cut edges of the main body fragment eventually fuse with the tongue to form a single eyeball. Tongue fragments formed pattern duplicated projections 100% of the time. In addition, pattern duplicated points derived from nasal fragments appeared most often in the posterior region of the tectum, the normal site of innervation of the nasal retina. This differed significantly from temporal fragment derived duplicated points which appeared more often in the front of the tectum, the normal site of innervation by temporal retina. Thus, the specificity of pattern duplicated innervation is related to the positional values remaining in the fragment after partial retinal ablation. The data indicate that cell movements during healing, whether overt as in the tongue healing mode, or remaining internal to the fragment as in the intermediate healing mode, are intimately correlated with pattern forming mechanisms which underlie pathological visuotectal duplication.

PubMed ID: 3678599
Article link: Dev Biol


Species referenced: Xenopus laevis
Genes referenced: fubp1 lims1