Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Theor Biol August 7, 1984; 109 (3): 299-329.

Application of reaction-diffusion models to cell patterning in Xenopus retina. Initiation of patterns and their biological stability.

Shoaf SA , Conway K , Hunt RK .

We have examined the behavior of two reaction-diffusion models, originally proposed by Gierer & Meinhardt (1972) and by Kauffman, Shymko & Trabert (1978), for biological pattern formation. Calculations are presented for pattern formation on a disc (approximating the geometry of a number of embryonic anlagen including the frog eye rudiment), emphasizing the sensitivity of patterns to changes in initial conditions and to perturbations in the geometry of the morphogen-producing space. Analysis of the linearized equations from the models enabled us to select appropriate parameters and disc size for pattern growth. A computer-implemented finite element method was used to solve the non-linear model equations reiteratively. For the Gierer-Meinhardt model, initial activation (varying in size over two orders of magnitude) of one point on the disc''s edge was sufficient to generate the primary gradient. Various parts of the disc were removed (remaining only as diffusible space) from the morphogen-producing cycle to investigate the effects of cells dropping out of the cycle due to cell death or malfunction (single point removed) or differentiation (center removed), as occur in the Xenopus eye rudiment. The resulting patterns had the same general shape and amplitude as normal gradients. Nor did a two-fold increase in disc size affect the pattern-generating ability of the model. Disc fragments bearing their primary gradient patterns were fused (with gradients in opposite directions, but each parallel to the fusion line). The resulting patterns generated by the model showed many similarities to results of "compound eye" experiments in Xenopus. Similar patterns were obtained with the model of Kauffman''s group (1978), but we found less stability of the pattern subject to simulations of central differentiation. However, removal of a single point from the morphogen cycle (cell death) did not result in any change. The sensitivity of the Kauffman et al. model to shape perturbations is not surprising since the model was originally designed to use shape and increasing size during growth to generate a sequence of transient patterns. However, the Gierer-Meinhardt model is remarkably stable even when subjected to a wide range of perturbations in the diffusible space, thus allowing it to cope with normal biological variability, and offering an exciting range of possibilities for reaction-diffusion models as mechanisms underlying the spatial patterns of tissue structures.

PubMed ID: 6471873
Article link: J Theor Biol
Grant support: [+]
Genes referenced: cope tbx2

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.2

Major funding for Xenbase is provided by grant P41 HD064556