Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-302
Methods Mol Biol. January 1, 2006; 322 17-30.

The physiology of the Xenopus laevis ovary.

Rasar MA , Hammes SR .


Abstract
Xenopus laevis has been used for many decades to study oocyte development and maturation. The Xenopus oocytes'' large size, relative abundance, and clearly defined progression of physical characteristics from oogonia to eggs make them ideal for studying oogenesis. In addition, the ability of steroids to trigger Xenopus oocyte maturation in vitro has resulted in their extensive use for the study of the complexities of meiosis. Interestingly, steroid-induced maturation of Xenopus oocytes occurs completely independent of transcription; thus, this process serves as one of the few biologically relevant models of nongenomic steroid-mediated signaling. Finally, Xenopus oocytes appear to play a critical role in ovarian steroidogenesis, suggesting that the Xenopus ovary may serve as a novel system for studying steroidogenesis. Evidence indicates that many of the features defining Xenopus laevis oogenesis and maturation might also be occurring in mammals, further emphasizing the strength and relevance of Xenopus laevis as a model for ovarian development and function.

PubMed ID: 16739713
Article link: Methods Mol Biol.
Grant support: DK59913 NIDDK NIH HHS

Genes referenced:
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556