Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3042
FEBS Lett. September 10, 2004; 574 (1-3): 31-6.

Aquaporin homologues in plants and mammals transport ammonia.

Jahn TP , Møller AL , Zeuthen T , Holm LM , Klaerke DA , Mohsin B , Kühlbrandt W , Schjoerring JK .


Abstract
Using functional complementation and a yeast mutant deficient in ammonium (NH4+) transport (Deltamep1-3), three wheat (Triticum aestivum) TIP2 aquaporin homologues were isolated that restored the ability of the mutant to grow when 2 mM NH4+ was supplied as the sole nitrogen source. When expressed in Xenopus oocytes, TaTIP2;1 increased the uptake of NH4+ analogues methylammonium and formamide. Furthermore, expression of TaTIP2;1 increased acidification of the oocyte-bathing medium containing NH4+ in accordance with NH3 diffusion through the aquaporin. Homology modeling of TaTIP2;1 in combination with site directed mutagenesis suggested a new subgroup of NH3-transporting aquaporins here called aquaammoniaporins. Mammalian AQP8 sharing the aquaammoniaporin signature also complemented NH4+ transport deficiency in yeast.

PubMed ID: 15358535
Article link: FEBS Lett.

Genes referenced: aqp8
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556