Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Proc Natl Acad Sci U S A. September 7, 2004; 101 (36): 13204-9.

Intracellular actin-based transport: how far you go depends on how often you switch.

Snider J , Lin F , Zahedi N , Rodionov V , Yu CC , Gross SP .

Intracellular molecular motor-driven transport is essential for such diverse processes as mitosis, neuronal function, and mitochondrial transport. Whereas there have been in vitro studies of how motors function at the single-molecule level, and in vivo studies of the structure of filamentary networks, studies of how the motors effectively use the networks for transportation have been lacking. We investigate how the combined system of myosin-V motors plus actin filaments is used to transport pigment granules in Xenopus melanophores. Experimentally, we characterize both the actin filament network, and how this transport is altered in response to external signals. We then develop a theoretical formalism to explain these changes. We show that cells regulate transport by controlling how often granules switch from one filament to another, rather than by altering individual motor activity at the single-molecule level, or by relying on structural changes in the network.

PubMed ID: 15331778
PMC ID: PMC516548
Article link: Proc Natl Acad Sci U S A.
Grant support: GM-62290-01 NIGMS NIH HHS , GM-64624-01 NIGMS NIH HHS , RR13186 NCRR NIH HHS , P41 RR013186 NCRR NIH HHS , R01 GM064624 NIGMS NIH HHS , R01 GM062290 NIGMS NIH HHS

Genes referenced: actl6a gnao1

External Resources:

Ashkin, 1991, Pubmed[+]

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556