Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-31184
Cell Tissue Res 1981 Jan 01;2161:113-30.
Show Gene links Show Anatomy links

Pineal complex of the clawed toad, Xenopus laevis Daud.: structure and function.

Korf HW , Liesner R , Meissl H , Kirk A .


???displayArticle.abstract???
The morphological and physiological properties of the pineal complex of Xenopus laevis were investigated in larval, juvenile and adult animals. In a representative majority of adult X. laevis, the frontal organ does not display signs of degeneration. Fully differentiated frontal organs contain photoreceptors typical of the pineal complex of lower vertebrates. By means of the acetylcholinesterase (AChE)-reaction approximately 30 neurons of two different types were demonstrated in the frontal organ. The frontal-organ nerve is composed of approximately 10 myelinated and 40 unmyelinated nerve fibers. The neuropil areas of the frontal organ are generally similar to the corresponding structures of the intracranial epiphysis. The neuronal apparatus of the epiphysis cerebri of X. laevis consists of (i) photoreceptor cells, (ii) approximately 100 AChE-positive neurons, (iii) complex neuropil areas, and (iv) a pineal tract formed by approximately 10 myelinated and approximately 100 unmyelinated nerve fibers. Some of them exhibit granular inclusions indicating that pinealopetal elements may enter the pineal complex of X. laevis via this pathway. The topography of the pineal tract of X. laevis differs considerably from that in ranid species. The most conspicuous element of the plexiform zones is the ribbon synapse. The basal processes of the photoreceptor cells may be presynaptic elements of simple, tangential, dyad or triad synaptic contacts. Conventional synapses were observed only occasionally. Electrophysiological recordings revealed that the pineal complex of Xenopus laevis is directly sensitive to light. In response to light stimuli, two types of responses, achromatic and chromatic, were recorded from the nerve of the frontal organ. In contrast, the epiphysis exhibited only achromatic units. The opposed color mechanism of the chromatic response showed a maximum sensitivity at approximately 360 nm for the inhibitory and at 520 nm for the excitatory event. The action spectrum of the achromatic response of the epiphysis and the frontal organ peaked between 500 and 520 nm and showed no Purkinje-shift during dark adaptation. The functional significance of these phenomena is discussed.

???displayArticle.pubmedLink??? 7226202



Species referenced: Xenopus laevis
Genes referenced: ache

References [+] :
BAGNARA, PINEAL REGULATION OF BODY BLANCHING IN AMPHIBIAN LARVAE. 1965, Pubmed