Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3343
Development. August 1, 2004; 131 (15): 3637-47.

Function and regulation of FoxF1 during Xenopus gut development.

Tseng HT , Shah R , Jamrich M .


Abstract
Development of the visceral mesoderm is a critical process in the organogenesis of the gut. Elucidation of function and regulation of genes involved in the development of visceral mesoderm is therefore essential for an understanding of gut organogenesis. One of the genes specifically expressed in the lateral plate mesoderm, and later in its derivative, the visceral mesoderm, is the Fox gene FoxF1. Its function is critical for Xenopus gut development, and embryos injected with FoxF1 morpholino display abnormal gut development. In the absence of FoxF1 function, the lateral plate mesoderm, and later the visceral mesoderm, does not proliferate and differentiate properly. Region- and stage-specific markers of visceral mesoderm differentiation, such as Xbap and alpha-smooth muscle actin, are not activated. The gut does not elongate and coil. These experiments provide support for the function of FoxF1 in the development of visceral mesoderm and the organogenesis of the gut. At the molecular level, FoxF1 is a downstream target of BMP4 signaling. BMP4 can activate FoxF1 transcription in animal caps and overexpression of FoxF1 can rescue twinning phenotypes, which results from the elimination of BMP4 signaling. The cis-regulatory elements of FoxF1 are located within a 2 kb DNA fragment upstream of the coding region. These sequences can drive correct temporal-spatial expression of a GFP reporter gene in transgenic Xenopus tadpoles. These sequences represent a unique tool, which can be used to specifically alter gene expression in the lateral plate mesoderm.

PubMed ID: 15229177
Article link: Development.
Grant support: P30 DK56338 NIDDK NIH HHS , R01 EY12505 NEI NIH HHS

Genes referenced: act3 bmp4 fgf2 foxf1 myc nkx3-2 t
Antibodies referenced: Acta2 Ab1
Morpholinos referenced: foxf1 MO1 foxf1 MO2
Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556