Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-340
Biochemistry 2006 May 30;4521:6733-40. doi: 10.1021/bi052640q.
Show Gene links Show Anatomy links

14-3-3 Mediates phosphorylation-dependent inhibition of the interaction between the ubiquitin E3 ligase Nedd4-2 and epithelial Na+ channels.

Nagaki K , Yamamura H , Shimada S , Saito T , Hisanaga S , Taoka M , Isobe T , Ichimura T .


???displayArticle.abstract???
Although recent studies show that the 14-3-3 protein is a negative regulator of ubiquitin E3 protein ligases, the molecular mechanism remains largely unknown. We previously demonstrated that 14-3-3 specifically binds one of the E3 enzymes, Nedd4-2 (a human gene product of KIAA0439, termed hNedd4-2), which can be phosphorylated by serum glucocorticoid-inducible protein kinase 1 (SGK1); this binding protects the phosphorylated/inactive hNedd4-2 from phosphatase-catalyzed dephosphorylation [Ichimura, T., et al. (2005) J. Biol. Chem. 280, 13187-13194]. Here we report an additional mechanism of 14-3-3-mediated regulation of hNedd4-2. Using surface plasmon resonance spectrometry, we show that 14-3-3 inhibits the interaction between the WW domains of hNedd4-2 and the PY motif of the epithelial Na(+) channel, ENaC. The inhibition was dose-dependent and was dependent on SGK1-catalyzed phosphorylation of Ser468 located between the WW domains. Importantly, a mutant of hNedd4-2, which can be phosphorylated by SGK1 but cannot bind 14-3-3, reduced SGK1-mediated stimulation of the ENaC-induced current in Xenopus laevis oocytes. In addition, 14-3-3 had similar effects on hNedd4-2 that had been phosphorylated by cAMP-dependent protein kinase (PKA). Our results, together with the recent finding on 14-3-3/parkin interactions [Sato, S., et al. (2006) EMBO J. 25, 211-221], suggest that 14-3-3 suppresses ubiquitin E3 ligase activities by inhibiting the formation of the enzyme/substrate complex.

???displayArticle.pubmedLink??? 16716084
???displayArticle.link??? Biochemistry


Species referenced: Xenopus laevis
Genes referenced: camp nedd4 nedd4l pacrg sgk1 tbx2