Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-34305
Mol Cell. December 1, 2000; 6 (6): 1365-75.

Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation.

Kavsak P , Rasmussen RK , Causing CG , Bonni S , Zhu H , Thomsen GH , Wrana JL .


Abstract
Ubiquitin-mediated proteolysis regulates the activity of diverse receptor systems. Here, we identify Smurf2, a C2-WW-HECT domain ubiquitin ligase and show that Smurf2 associates constitutively with Smad7. Smurf2 is nuclear, but binding to Smad7 induces export and recruitment to the activated TGF beta receptor, where it causes degradation of receptors and Smad7 via proteasomal and lysosomal pathways. IFN gamma, which stimulates expression of Smad7, induces Smad7-Smurf2 complex formation and increases TGF beta receptor turnover, which is stabilized by blocking Smad7 or Smurf2 expression. Furthermore, Smad7 mutants that interfere with recruitment of Smurf2 to the receptors are compromised in their inhibitory activity. These studies thus define Smad7 as an adaptor in an E3 ubiquitin-ligase complex that targets the TGF beta receptor for degradation.

PubMed ID: 11163210
Article link: Mol Cell.

Genes referenced: smad7 smurf2 tgfb1
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556