Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-35046
IEEE Trans Nanobioscience 2006 Dec 01;54:251-62. doi: 10.1109/tnb.2006.886551.
Show Gene links Show Anatomy links

Tissue and species differences in the application of quantum dots as probes for biomolecular targets in the inner ear and kidney.

Knight VB , Serrano EE .


???displayArticle.abstract???
Quantum dots (QDs) are useful biological probes because of the increased photostability and quantum efficiency they offer over organic fluorophores. However, toxicity concerns arise because the QD core is composed of cadmium and selenium, metals known to be unsafe for humans and animals. We investigated the feasibility of quantum dots as biological labels for imaging studies of inner ear and kidney, tissues that share a polarized epithelial arrangement and drug susceptibility. We found that methods for labeling the actin cytoskeleton of monolayers of cultured amphibian kidney cells (Xenopus A6) with 565 nm QD conjugates were not feasible with large Xenopus inner ear organs. We then compared the uptake of 565 nm cationic peptide-targeted and nontargeted QDs in live kidney cell lines (amphibian, A6 and XLK-WG; human, HEK-293). Results showed that targeted QDs are internalized by all three kidney cell lines, and that nontargeted CdSe nanocrystals are sequestered only by human kidney cells. CellTracker Red CMTPX confirmed the membrane integrity and viability of HEK-293 cells that internalized QDs. Our results demonstrate species and tissue differences in QD uptake and labeling, and underscore the need for long-term studies of QD toxicity and fate in cells.

???displayArticle.pubmedLink??? 17181024
???displayArticle.link??? IEEE Trans Nanobioscience
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: actl6a krt62