Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3505
J Cell Sci 2004 Jun 15;117Pt 14:2917-24. doi: 10.1242/jcs.01153.
Show Gene links Show Anatomy links

Non-genomic regulation of transmitter release by retinoic acid at developing motoneurons in Xenopus cell culture.

Liao YP , Ho SY , Liou JC .


???displayArticle.abstract???
Although the long-term effects of all-trans retinoic acid (RA) on neuronal growth and differentiation have been intensively studied, nothing is known about its effect on synaptic transmission. Here we show that RA rapidly and specifically enhances the spontaneous acetylcholine release at developing neuromuscular synapses in Xenopus cell culture using whole-cell patch-clamp recording. Acute addition of RA dose-dependently and reversibly enhances the frequency of spontaneous synaptic currents (SSCs). Application of the lipophilic RA analogue all-trans retinol or RA metabolites produced by light-induced decomposition failed to provoke similar changes in SSC frequency, indicating the specificity of RA-induced facilitation of spontaneous transmitter release. Protein synthesis inhibitors anisomycin or cycloheximide had no effect on RA-induced SSC frequency facilitation. Treating cells with pan RA receptor (RAR) selective agonist or RARbeta-selective agonist, but not RARalpha-, RARgamma- or retinoid X receptor (RXR)-selective agonists, mimicked the action of RA. These results suggest that RA acts through the activation of RARbeta, to induce a rapid, non-genomic increase in the frequency of spontaneous transmitter release at developing neuromuscular synapses.

???displayArticle.pubmedLink??? 15161940
???displayArticle.link??? J Cell Sci


Species referenced: Xenopus
Genes referenced: rarb