Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3512
J Biol Chem. September 3, 2004; 279 (36): 37271-81.

Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators.

Du X , Zhang H , Lopes C , Mirshahi T , Rohacs T , Logothetis DE .


Abstract
The activity of specific inwardly rectifying potassium (Kir) channels is regulated by any of a number of different modulators, such as protein kinase C, G(q) -coupled receptor stimulation, pH, intracellular Mg(2+) or the betagamma-subunits of G proteins. Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is an essential factor for maintenance of the activity of all Kir channels. Here, we demonstrate that the strength of channel-PIP(2) interactions determines the sensitivity of Kir channels to regulation by the various modulators. Furthermore, our results suggest that differences among Kir channels in their specific regulation by a given modulator may reflect differences in their apparent affinity of interactions with PIP(2).

PubMed ID: 15155739
Article link: J Biol Chem.
Grant support: HL59949 NHLBI NIH HHS , HL59949 NHLBI NIH HHS , HL59949 NHLBI NIH HHS , HL59949 NHLBI NIH HHS , HL59949 NHLBI NIH HHS , HL59949 NHLBI NIH HHS

Genes referenced:
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556