Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-3621
Development June 1, 2004; 131 (11): 2577-86.

G1/S phase cyclin-dependent kinase overexpression perturbs early development and delays tissue-specific differentiation in Xenopus.

Richard-Parpaillon L , Cosgrove RA , Devine C , Vernon AE , Philpott A .


Abstract
Cell division and differentiation are largely incompatible but the molecular links between the two processes are poorly understood. Here, we overexpress G1/S phase cyclins and cyclin-dependent kinases in Xenopus embryos to determine their effect on early development and differentiation. Overexpression of cyclin E prior to the midblastula transition (MBT), with or without cdk2, results in a loss of nuclear DNA and subsequent apoptosis at early gastrula stages. By contrast, overexpressed cyclin A2 protein does not affect early development and, when stabilised by binding to cdk2, persists to tailbud stages. Overexpression of cyclin A2/cdk2 in post-MBT embryos results in increased proliferation specifically in the epidermis with concomitant disruption of skin architecture and delay in differentiation. Moreover, ectopic cyclin A2/cdk2 also inhibits differentiation of primary neurons but does not affect muscle. Thus, overexpression of a single G1/S phase cyclin/cdk pair disrupts the balance between division and differentiation in the early vertebrate embryo in a tissue-specific manner.

PubMed ID: 15115752
Article link: Development


Species referenced: Xenopus laevis
Genes referenced: acta4 actc1 actl6a bcl2l1 cdk2 krt12.4 tubb
Antibodies: Epidermis Ab1


Article Images: [+] show captions