Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-37125
Mech Dev March 1, 2008; 125 (3-4): 207-22.

IRE1beta is required for mesoderm formation in Xenopus embryos.

Yuan L , Cao Y , Oswald F , Knöchel W .


Abstract
IRE1 is an atypical serine/threonine kinase transmembrane protein with RNase activity. In the unfolded protein response (UPR), they function as proximal sensor of the unfolded proteins in the endoplasmic reticulum (ER). Upon activation by ER stress, IRE1 performs an unconventional cytoplasmic splicing of XBP1 pre-mRNA and thus allows the synthesis of active XBP1, which activates UPR target genes to restore the homeostasis of the ER. IRE1/XBP1 signaling is hence essential for UPR but its function during embryogenesis is yet unknown. The transcripts of the two isoforms of IRE1 in Xenopus, xIRE1alpha and xIRE1beta are differentially expressed during embryogenesis. We found that xIRE1beta is sufficient for cytoplasmic splicing of xXBP1 pre-mRNA. Although gain of xIRE1beta function had no significant effect on Xenopus embryogenesis, overexpression of both, xIRE1beta and xXBP1 pre-mRNA, inhibits activin A induced mesoderm formation, suggesting that an enhanced activity of the IRE1/XBP1 pathway represses mesoderm formation. Surprisingly, while loss of XBP1 function promotes mesoderm formation, the loss of IRE1beta function led to a reduction of mesoderm formation, probably by action of IRE1 being different from the IRE1/XBP1 pathway. Therefore, both gain and loss of function studies demonstrate that IRE1 is required for mesoderm formation in Xenopus embryos.

PubMed ID: 18191552
Article link: Mech Dev

Genes referenced: ern1 ern2 odc1 sox17a tbxt xbp1
Morpholinos: ern2 MO1 xbp1 MO4


Article Images: [+] show captions


Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556