Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-37158
Dev Dyn March 1, 2008; 237 (3): 565-79.

Membrane dynamics of cleavage furrow closure in Xenopus laevis.



Abstract
Epithelial membrane polarity develops early in Xenopus development, with membrane inserted along the earliest cleavage furrows by means of localized exocytosis. The added surface constitutes a new basolateral domain important for early morphogenesis. This basolateral surface becomes isolated from the outside by furrow closure, a zippering of adjacent apical-basolateral margins. Time-lapse microscopy of membrane-labeled embryos revealed two distinct kinds of protrusive activity in furrow closure. Early in furrowing, protrusive activity was associated with purse-string contractility along the apical-basolateral margins. Later in furrow progression, a basolateral protrusive zone developed entirely within the new membrane domain, with long motile filopodia extending in contractile bands from the exposed surfaces. Filopodia interacting with opposing cell surfaces across the cleavage furrow appeared to mediate blastomere-blastomere adhesion, contact spreading and lamellipodial protrusion. Interference with these dynamic activities prevented furrow closure, indicating a basic role for both marginal and basolateral protrusive activities in early embryogenesis.

PubMed ID: 18224710
Article link: Dev Dyn



Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.13.0


Major funding for Xenbase is provided by grant P41 HD064556