Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
PLoS One. July 16, 2008; 3 (7): e2749.

Circadian genes are expressed during early development in Xenopus laevis.

Curran KL , LaRue S , Bronson B , Solis J , Trow A , Sarver N , Zhu H .

Circadian oscillators are endogenous time-keeping mechanisms that drive twenty four hour rhythmic changes in gene expression, metabolism, hormone levels, and physical activity. We have examined the developmental expression of genes known to regulate circadian rhythms in order to better understand the ontogeny of the circadian clock in a vertebrate. In this study, genes known to function together in part of the core circadian oscillator mechanism (xPeriod1, xPeriod2, and xBmal1) as well as a rhythmic, clock-controlled gene (xNocturnin) were analyzed using in situ hybridization in embryos from neurula to late tailbud stages. Each transcript was present in the developing nervous system in the brain, eye, olfactory pit, otic vesicle and at lower levels in the spinal cord. These genes were also expressed in the developing somites and heart, but at different developmental times in peripheral tissues (pronephros, cement gland, and posterior mesoderm). No difference was observed in transcript levels or localization when similarly staged embryos maintained in cyclic light were compared at two times of day (dawn and dusk) by in situ hybridization. Quantitation of xBmal1 expression in embryonic eyes was also performed using qRT-PCR. Eyes were isolated at dawn, midday, dusk, and midnight (cylic light). No difference in expression level between time-points was found in stage 31 eyes (p = 0.176) but stage 40 eyes showed significantly increased levels of xBmal1 expression at midnight (RQ = 1.98+/-0.094) when compared to dawn (RQ = 1+/-0.133; p = 0.0004). We hypothesize that when circadian genes are not co-expressed in the same tissue during development that it may indicate pleiotropic functions of these genes that are separate from the timing of circadian rhythm. Our results show that all circadian genes analyzed thus far are present during early brain and eye development, but rhythmic gene expression in the eye is not observed until after stage 31 of development.

PubMed ID: 18716681
PMC ID: PMC2518526
Article link: PLoS One.
Grant support: MH61461 NIMH NIH HHS, R01 MH061461 NIMH NIH HHS, MH61461 NIMH NIH HHS

Genes referenced: arntl clock f12 noct per1 per2

Baggs, 2003, Pubmed, Xenbase[+]

Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [4.5.0]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556