Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-38336
J Cell Biol 2008 Aug 11;1823:421-8. doi: 10.1083/jcb.200801145.
Show Gene links Show Anatomy links

Microtubule cross-linking triggers the directional motility of kinesin-5.

Kapitein LC , Kwok BH , Weinger JS , Schmidt CF , Kapoor TM , Peterman EJ .


???displayArticle.abstract???
Although assembly of the mitotic spindle is known to be a precisely controlled process, regulation of the key motor proteins involved remains poorly understood. In eukaryotes, homotetrameric kinesin-5 motors are required for bipolar spindle formation. Eg5, the vertebrate kinesin-5, has two modes of motion: an adenosine triphosphate (ATP)-dependent directional mode and a diffusive mode that does not require ATP hydrolysis. We use single-molecule experiments to examine how the switching between these modes is controlled. We find that Eg5 diffuses along individual microtubules without detectable directional bias at close to physiological ionic strength. Eg5's motility becomes directional when bound between two microtubules. Such activation through binding cargo, which, for Eg5, is a second microtubule, is analogous to known mechanisms for other kinesins. In the spindle, this might allow Eg5 to diffuse on single microtubules without hydrolyzing ATP until the motor is activated by binding to another microtubule. This mechanism would increase energy and filament cross-linking efficiency.

???displayArticle.pubmedLink??? 18678707
???displayArticle.pmcLink??? PMC2500128
???displayArticle.link??? J Cell Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: kif11 tbx2


???attribute.lit??? ???displayArticles.show???
References [+] :
Bray, Conformational spread: the propagation of allosteric states in large multiprotein complexes. 2004, Pubmed