Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-38715
Mech Dev January 1, 2009; 126 (1-2): 1-17.

The roles of the FGF signal in zebrafish embryos analyzed using constitutive activation and dominant-negative suppression of different FGF receptors.

Ota S , Tonou-Fujimori N , Yamasu K .


Abstract
The roles of the FGF family growth factors and their receptors (FGFRs) in zebrafish embryos were examined using variously modified versions of the four FGFR genes (fgfr1-4). Constitutively active forms of all of the examined FGFRs (ca-FGFRs) caused dorsalization, brain caudalization, and secondary axis formation, indicating that the main FGF signal transduction downstream of the receptor is highly similar among FGFRs. All of the membrane-bound type of dominant-negative FGFRs (mdn-FGFRs) derived from the four fgfr genes, which interfere with endogenous FGFRs, produced posterior truncation, as previously reported in both Xenopus and zebrafish. mdn-FGFR3c had the strongest effects on embryos, progressively disrupting the posterior structure as the dose increased. At the highest dose, only the forebrain was formed. At lower doses, mdn-FGFR3c mainly suppressed the paraxial mesoderm. The co-injection of mRNA for different mdn-FGFRs and FGFs resulted in diverse suppression spectra of the respective FGFRs against FGFs. Only mdn-FGFR3c severely suppressed all of the FGFs examined. We also examined the effects of the secretory type of dominant-negative FGFRs (sdn-FGFRs), which are released from cells and trap FGF ligands. Only sdn-FGFR3c resulted in the characteristic effect of selectively disrupting the isthmic development, as well as the tailbud. The co-injection of the mRNA for sdn-FGFRs and FGFs suggested that sdn-FGFR3c inhibits FGFs of the FGF8 subfamily, which is consistent with its specific effects on development. We discuss the implications of our findings obtained in the present study.

PubMed ID: 19015027
Article link: Mech Dev

Genes referenced: fgf8 fgfr1



Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.1


Major funding for Xenbase is provided by grant P41 HD064556