Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-38726
Genesis. January 1, 2009; 47 (1): 19-31.

xArx2: an aristaless homolog that regulates brain regionalization during development in Xenopus laevis.

Wolanski M , Khosrowshahian F , Kelly LE , El-Hodiri HM , Crawford MJ .


Abstract
The aristaless-related gene, Arx, plays a fundamental role in patterning the brain in humans and mice. Arx mutants exhibit lissencephaly among other anomalies. We have cloned a Xenopus aristaless homolog that appears to define specific regions of the developing forebrain. xArx2 is transcribed in blastula through neurula stages, and comes to be restricted to the ventral and lateral telencephalon, lateral diencephalon, neural floor plate of the anterior spinal cord, and somites. In this respect, Arx2 expresses in regions similar to Arx with the exception of the somites. Overexpression enlarges the telencephalon, and interference by means of antisense morpholino-mediated translation knockdown reduces growth of this area. Overexpression and inhibition studies demonstrate that misregulation of xArx2 imposes dire consequences upon patterns of differentiation not only in the forebrain where the gene normally expresses, but also in more caudal brain territories and derivatives as well. This suggests that evolutionary changes that expanded Arx-expression from ventral to dorsal prosencephalon might be one of the determinants that marked development and expansion of the telencephalon.

PubMed ID: 19006070
Article link: Genesis.

Genes referenced: arx egr2 foxg1 frzb2 gbx2.1 gbx2.2 otx1 otx2 pax2 pax6 rax rpe


External Resources:
Article Images: [+] show captions


Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.1
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556