Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-38770
J Biol Chem 2009 Jan 02;2841:150-157. doi: 10.1074/jbc.M807358200.
Show Gene links Show Anatomy links

Functional regulation of the epithelial Na+ channel by IkappaB kinase-beta occurs via phosphorylation of the ubiquitin ligase Nedd4-2.

Edinger RS , Lebowitz J , Li H , Alzamora R , Wang H , Johnson JP , Hallows KR .


???displayArticle.abstract???
We have previously shown that IkappaB kinase-beta (IKKbeta) interacts with the epithelial Na+ channel (ENaC) beta-subunit and enhances ENaC activity by increasing its surface expression in Xenopus oocytes. Here, we show that the IKKbeta-ENaC interaction is physiologically relevant in mouse polarized kidney cortical collecting duct (mpkCCDc14) cells, as RNA interference-mediated knockdown of endogenous IKKbeta in these cells by approximately 50% resulted in a similar reduction in transepithelial ENaC-dependent equivalent short circuit current. Although IKKbeta binds to ENaC, there was no detectable phosphorylation of ENaC subunits by IKKbeta in vitro. Because IKKbeta stimulation of ENaC activity occurs through enhanced channel surface expression and the ubiquitin-protein ligase Nedd4-2 has emerged as a central locus for ENaC regulation at the plasma membrane, we tested the role of Nedd4-2 in this regulation. IKKbeta-dependent phosphorylation of Xenopus Nedd4-2 expressed in HEK-293 cells occurred both in vitro and in vivo, suggesting a potential mechanism for regulation of Nedd4-2 and thus ENaC activity. 32P labeling studies utilizing wild-type or mutant forms of Xenopus Nedd4-2 demonstrated that Ser-444, a key SGK1 and protein kinase A-phosphorylated residue, is also an important IKKbeta phosphorylation target. ENaC stimulation by IKKbeta was preserved in oocytes expressing wild-type Nedd4-2 but blocked in oocytes expressing either a dominant-negative (C938S) or phospho-deficient (S444A) Nedd4-2 mutant, suggesting that Nedd4-2 function and phosphorylation by IKKbeta are required for IKKbeta regulation of ENaC. In summary, these results suggest a novel mode of ENaC regulation that occurs through IKKbeta-dependent Nedd4-2 phosphorylation at a recognized SGK1 and protein kinase A target site.

???displayArticle.pubmedLink??? 18981174
???displayArticle.pmcLink??? PMC2610498
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: ikbkb nedd4 nedd4l sgk1

References [+] :
Abriel, Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. 1999, Pubmed, Xenbase