Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-38877
Xenobiotica 2008 Sep 01;389:1252-62. doi: 10.1080/00498250802130039.
Show Gene links Show Anatomy links

Genetic variants of organic cation transporter 2 (OCT2) significantly reduce metformin uptake in oocytes.

Song IS , Shin HJ , Shin JG .


???displayArticle.abstract???
1. The authors sought to evaluate the contribution of organic cation transporters (OCTs) to the renal tubular transport of metformin using LLC-PK1 cells as an in vitro model for the renal proximal tubule, and to investigate the effects of three non-synonymous genetic variants of OCT2 on the transport activity of metformin in vitro using an oocyte over-expression system. 2. The basolateral-to-apical transport of metformin was significantly greater than the apical-to-basolateral transport and showed concentration dependency with the kinetic parameters: maximum transport rate (V(max)), 922 pmol min(-1) per 5 x 10(5) cells; Michaelis-Menten constant (K(m)), 393 microM; intrinsic clearance (CL(int)), 2.35 microl min(-1) per 5 x 10(5) cells; and diffusion constant (K(d)), 0.33 microl min(-1) per 5 x 10(5) cells. The basolateral-to-apical transport of metformin was inhibited by phenoxybenzamine, an inhibitor of OCTs, but not by cyclosporine A, MK571, or fumitremorgin C, which are inhibitors of P-glycoprotein, multidrug resistance proteins (MRPs), and breast cancer resistance protein (BCRP), respectively, suggesting that OCTs play a role in renal tubular secretion of metformin. 3. Metformin uptake was much greater in oocytes expressing OCT2-wild type (OCT2-WT) than OCT1-WT compared with uptake in water-injected oocytes. Uptake was significantly decreased in oocytes expressing OCT2-T199I, -T201M, and -A270S compared with that in OCT2-WT, suggesting that metformin is a better substrate for OCT2 than for OCT1 and that the amino acid-substituted variants of OCT2 cause a functional decrease in metformin uptake. 4. In conclusion, the genetic variants of OCT2 (OCT2-T199I, -T201M, and -A270S) decreased the transport activity of metformin and thus may contribute to the inter-individual variation in metformin disposition as OCT2 plays a pivotal role in renal excretion, the major disposition route of metformin.

???displayArticle.pubmedLink??? 18728938
???displayArticle.link??? Xenobiotica


Species referenced: Xenopus
Genes referenced: pklr pou2f1 pou2f2