Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-39884
Neurogenetics February 1, 2010; 11 (1): 27-40.

Reduced levels of survival motor neuron protein leads to aberrant motoneuron growth in a Xenopus model of muscular atrophy.

Ymlahi-Ouazzani Q , J Bronchain O , Paillard E , Ballagny C , Chesneau A , Jadaud A , Mazabraud A , Pollet N .


Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by motor neuron loss and skeletal muscle atrophy. The loss of function of the smn1 gene, the main supplier of survival motor neuron protein (SMN) protein in human, leads to reduced levels of SMN and eventually to SMA. Here, we ask if the amphibian Xenopus tropicalis can be a good model system to study SMA. Inhibition of the production of SMN using antisense morpholinos leads to caudal muscular atrophy in tadpoles. Of note, early developmental patterning of muscles and motor neurons is unaffected in this system as well as acetylcholine receptors clustering. Muscular atrophy seems to rather result from aberrant pathfinding and growth arrest and/or shortening of motor axons. This event occurs in the absence of neuronal cell bodies apoptosis, a process comparable to that of amyotrophic lateral sclerosis. Xenopus tropicalis is revealed as a complementary animal model for the study of SMA.

PubMed ID: 19517146
Article link: Neurogenetics

Genes referenced: acta2 chat lhx3 myh1 myod1 smn1 smndc1 zeb1
Morpholinos: smn1 MO1 smn1 MO2

Disease Ontology terms: adult spinal muscular atrophy

Article Images: [+] show captions
References [+] :
Battaglia, Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. 1998, Pubmed


Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556