Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-40676
Bioinform Biol Insights. February 26, 2008; 2 157-69.

Distribution of polymorphic and non-polymorphic microsatellite repeats in Xenopus tropicalis.

Xu Z , Gutierrez L , Hitchens M , Scherer S , Sater AK , Wells DE .


Abstract
The results of our bioinformatics analysis have found over 91,000 di-, tri-, and tetranucleotide microsatellites in our survey of 25% of the X. tropicalis genome, suggesting there may be over 360,000 within the entire genome. Within the X. tropicalis genome, dinucleotide (78.7%) microsatellites vastly out numbered tri- and tetranucleotide microsatellites. Similarly, AT-rich repeats are overwhelmingly dominant. The four AT-only motifs (AT, AAT, AAAT, and AATT) account for 51,858 out of 91,304 microsatellites found. Individually, AT microsatellites were the most common repeat found, representing over half of all di-, tri-, and tetranucleotide microsatellites. This contrasts with data from other studies, which show that AC is the most frequent microsatellite in vertebrate genomes (Toth et al. 2000). In addition, we have determined the rate of polymorphism for 5,128 non-redundant microsatellites, embedded in unique sequences. Interestingly, this subgroup of microsatellites was determined to have significantly longer repeats than genomic microsatellites as a whole. In addition, microsatellite loci with tandem repeat lengths more than 30 bp exhibited a significantly higher degree of polymorphism than other loci. Pairwise comparisons show that tetranucleotide microsatellites have the highest polymorphic rates. In addition, AAT and ATC showed significant higher polymorphism than other trinucleotide microsatellites, while AGAT and AAAG were significantly more polymorphic than other tetranucleotide microsatellites.

PubMed ID: 19812773
PMC ID: PMC2735965
Article link: Bioinform Biol Insights.
Grant support: R01 HD046661 NICHD NIH HHS

Genes referenced: ces1 slc1a5 tbx2


References:
Amaya, 2005, Pubmed, Xenbase[+]


Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [4.5.0]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556