Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-410
Invest Ophthalmol Vis Sci May 1, 2006; 47 (5): 2150-60.

Characterization of peripherin/rds and rom-1 transport in rod photoreceptors of transgenic and knockout animals.

Lee ES , Burnside B , Flannery JG .


Abstract
PURPOSE: Peripherin/rds and rom-1 have structural roles in morphogenesis and stabilization of the outer segment, but little is known about their transport and sorting to the rod outer segment. Peripherin/rds and rom-1 trafficking were studied in several knockout and transgenic animal models. METHODS: Rod outer segment formation and distribution of peripherin/rds and rom-1 were examined by immunohistochemistry, electron microscopy, and molecular biological methods in wild-type, rhodopsin-knockout, and peripherin/rds-knockout mice. C-terminally truncated peripherin/rds (Xper38)-GFP chimeric protein sorting was followed by immunofluorescence microscopy in transgenic Xenopus. RESULTS: In developing wild-type photoreceptors, peripherin/rds was detected exclusively in the distal tip of the connecting cilium in advance of outer segment formation. Rhodopsin-knockout mice failed to create normal rod outer segments and instead, elaborated membranous protrusions at the distal cilium tip. Peripherin/rds and rom-1 localized to this ciliary membrane in rhodopsinless photoreceptors. In transgenic Xenopus, a C-terminally truncated peripherin/rds-GFP fusion predominantly localized to its normal location within disc rims. In developing rds mice, rom-1 accumulated primarily in distal ciliary membranes. CONCLUSIONS: Peripherin/rds transport and localization are polarized to the site of outer segment morphogenesis before disc formation in developing photoreceptors. Peripherin/rds and rom-1 trafficking is maintained in rhodopsin-knockouts, suggesting that rim proteins and rhodopsin have separate transport pathways. The presence of truncated peripherin/rds-GFP in the outer segment supports previous evidence that peripherin/rds mice form homotetramers for outer segment targeting. The finding that rom-1 transports to the outer segment domain in rds mice suggests that rom-1 may possess its own sorting and transport signals.

PubMed ID: 16639027
PMC ID: PMC1950294
Article link: Invest Ophthalmol Vis Sci
Grant support: [+]
Genes referenced: prph prph2 rho rom1

References:
Arikawa, 1992, Pubmed [+]


Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.3


Major funding for Xenbase is provided by grant P41 HD064556