Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-4105
Pharm Res 2003 Dec 01;2012:1911-6. doi: 10.1023/b:pham.0000008036.05892.e9.
Show Gene links Show Anatomy links

Biophysical evidence for His57 as a proton-binding site in the mammalian intestinal transporter hPepT1.

Uchiyama T , Kulkarni AA , Davies DL , Lee VH .


???displayArticle.abstract???
PURPOSE: The objective of this study was to provide direct evidence of the relative importance of the His57 residue present in transmembrane domain 2 (TMD 2) and the His121 residue in TMD 4 as proton-binding sites in human PepT1 (hPepT1) by using a novel mutagenesis approach. METHODS: His57 and His121 in hPepT1 were each mutated to alanine, arginine, or lysine individually to obtain H57A-, H57R-, H57K-, H121A-, H121R-, and H121K-hPepT1. H7A-hPepT1 was used as a negative control. [3H]Glycylsarcosine (Gly-Sar) uptake was measured 72 h posttransfection using HEK293 cells individually transfected with these mutated proteins. Steady-state I/V curves (-150 mV to +50 mV, holding potential -70 mV) were obtained by measuring 5 mM Gly-Sar-induced currents in oocytes expressing H-57R- and H57K-hPepT1. Noninjected oocytes and wild-type hPepT1 (WT-hPepT1)-injected oocytes served as negative and positive controls, respectively. RESULTS: At pH 6.0, H57K-, H57R-, H121K-, and H121R-hPepT1 led to a 97%, 90%, 45%, and 75% decrease in [3H]Gly-Sar uptake into HEK293 cells, respectively. At pH 7.4, uptake in cells transfected with H57K- and H57R-hPepT1 was not significantly different from that at pH 6.0, whereas cells expressing H121R- and H121K-hPepT1 showed 56% and 65% decrease, respectively, compared to that at pH 6.0. In oocytes expressing H57R-hPepT1, steady-state currents induced by 5 mM Gly-Sar increased with increasing pH (I(max) = 300 nA at pH 8.5), suggesting the binding of protons to H57R. No such trend was observed in oocytes injected with H57K, H121R, and H121K cRNA. CONCLUSIONS: H57R-hPepT1 is able to bind protons at a relatively basic pH, resulting in facilitation of transport of Gly-Sar by hPepT1 at higher pH. Our novel approach provides direct evidence that His57 is a principal proton-binding site in hPepT1.

???displayArticle.pubmedLink??? 14725353
???displayArticle.link??? Pharm Res
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: slc15a1 ttn

References [+] :
Bolger, Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1. 1998, Pubmed