Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-41492
Dev Biol. August 6, 2010; 1347 19-32.

Sonic hedgehog expression during Xenopus laevis forebrain development.

Domínguez L , González A , Moreno N .


Abstract
We have analyzed the developing expression pattern of x-Shh in the Xenopus forebrain, interpreting the results within the framework of the neuromeric model to assess evolutionary trends and clues. To achieve this goal, we have characterized phenotypically the developing x-Shh expressing forebrain subdivisions and neurons by means of the combination of in situ hybridization for x-Shh and immunohistochemistry for the detection of forebrain essential regulators and markers, such as the homeodomain transcription factors Islet 1, Orthopedia, NKX2.1 and NKX2.2 and tyrosine hydroxylase. Substantial evidence was found for x-Shh expression in the telencephalic commissural preoptic area and this is strongly correlated with the presence of a pallidum and/or a basal telencephalic cholinergic system. In the diencephalon, x-Shh was demonstrated in the zona limitans intrathalamica and the x-Shh expressing cells were extended into the prethalamus. Throughout development and in the adult hypothalamic x-Shh expression was strong in basal regions but, in addition, in the alar suprachiasmatic region. The findings obtained in the forebrain of Xenopus revealed a largely conserved pattern of Shh expression among tetrapods. However, interesting differences were also noted that could be related to evolutive changes in forebrain organization.

PubMed ID: 20540934
Article link: Dev Biol.

Genes referenced: hopx isl1 nkx2-1 nkx2-2 otp shh th



Article Images: [+] show captions

My Xenbase: [ Log-in / Register ]
version: [4.6.0]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556