Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-41557
J Biol Chem 2010 Jul 09;28528:21689-97. doi: 10.1074/jbc.M110.125971.
Show Gene links Show Anatomy links

The late endosomal ClC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression.

Neagoe I , Stauber T , Fidzinski P , Bergsdorf EY , Jentsch TJ .


???displayArticle.abstract???
Members of the CLC protein family of Cl(-) channels and transporters display the remarkable ability to function as either chloride channels or Cl(-)/H(+) antiporters. Due to the intracellular localization of ClC-6 and ClC-7, it has not yet been possible to study the biophysical properties of these members of the late endosomal/lysosomal CLC branch in heterologous expression. Whereas recent data suggest that ClC-7 functions as an antiporter, transport characteristics of ClC-6 have remained entirely unknown. Here, we report that fusing the green fluorescent protein (GFP) to the N terminus of ClC-6 increased its cell surface expression, allowing us to functionally characterize ClC-6. Compatible with ClC-6 mediating Cl(-)/H(+) exchange, Xenopus oocytes expressing GFP-tagged ClC-6 alkalinized upon depolarization. This alkalinization was dependent on the presence of extracellular anions and could occur against an electrochemical proton gradient. As observed in other CLC exchangers, ClC-6-mediated H(+) transport was abolished by mutations in either the "gating" or "proton" glutamate. Overexpression of GFP-tagged ClC-6 in CHO cells elicited small, outwardly rectifying currents with a Cl(-) > I(-) conductance sequence. Mutating the gating glutamate of ClC-6 yielded an ohmic anion conductance that was increased by additionally mutating the "anion-coordinating" tyrosine. Additionally changing the chloride-coordinating serine 157 to proline increased the NO(3)(-) conductance of this mutant. Taken together, these data demonstrate for the first time that ClC-6 is a Cl(-)/H(+) antiporter.

???displayArticle.pubmedLink??? 20466723
???displayArticle.pmcLink??? PMC2898453
???displayArticle.link??? J Biol Chem



References [+] :
Accardi, Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. 2004, Pubmed