Xenbase is experiencing difficulties due to technical problems with the University of Calgary IT infrastructure and may go temporarily offline.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
FASEB J. November 1, 2010; 24 (11): 4378-95.

Intramolecular loop/tail interactions are essential for connexin 43-hemichannel activity.

Ponsaerts R , De Vuyst E , Retamal M , D'hondt C , Vermeire D , Wang N , De Smedt H , Zimmermann P , Himpens B , Vereecke J , Leybaert L , Bultynck G .

Connexin-assembled gap junctions (GJs) and hemichannels coordinate intercellular signaling processes. Although the regulation of connexins in GJs has been well characterized, the molecular determinants controlling connexin-hemichannel activity are unresolved. Here we investigated the regulation of Cx43-hemichannel activity by actomyosin contractility and intracellular [Ca(2+)] ([Ca(2+)](i)) using plasma membrane-permeable TAT peptides (100 μM) designed to interfere with interactions between the cytoplasmic loop (CL) and carboxy-terminal (CT) in primary bovine corneal endothelial cells and HeLa, C6 glioma, and Xenopus oocytes ectopically expressing Cx43. Peptides corresponding to the last 10 CT aa (TAT-Cx43CT) prevented the inhibition of Cx43-hemichannel activity by contractility/high [Ca(2+)](i), whereas a reverse peptide (TAT-Cx43CTrev) did not. These effects were independent of zonula occludens-1, a cytoskeletal-associated Cx43-binding protein. In contrast, peptides corresponding to CL (TAT-L2) inhibited Cx43-hemichannel responses, whereas a mutant peptide (TAT-L2(H126K/I130N)) did not inhibit. In these assays, TAT-Cx43CT acted as a scaffold for TAT-L2 and vice versa, a finding supported by surface plasmon resonance measurements. Loop/tail interactions appeared essential for Cx43-hemichannel activity, because TAT-Cx43CT restored the activity of nonfunctional hemichannels, consisting of either Cx43 lacking the C-terminal tail (Cx43(M239)) or intact Cx43 ectopically expressed in Xenopus oocytes. We conclude that intramolecular loop/tail interactions control Cx43-hemichannel activity, laying the basis for developing hemichannel-specific blockers.

PubMed ID: 20634352
Article link: FASEB J.

Genes referenced: gja1

My Xenbase: [ Log-in / Register ]
version: [3.11.2]

Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556