Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Invest Ophthalmol Vis Sci. January 1, 2011; 52 (1): 364-73.

Cone degeneration following rod ablation in a reversible model of retinal degeneration.

Choi RY , Engbretson GA , Solessio EC , Jones GA , Coughlin A , Aleksic I , Zuber ME .

Amphibian retinas regenerate after injury, making them ideal for studying the mechanisms of retinal regeneration, but this leaves their value as models of retinal degeneration in question. The authors asked whether the initial cellular changes after rod loss in the regenerative model Xenopus laevis mimic those observed in nonregenerative models. They also asked whether rod loss was reversible. The authors generated transgenic X. laevis expressing the Escherichia coli enzyme nitroreductase (NTR) under the control of the rod-specific rhodopsin (XOP) promoter. NTR converts the antibiotic metronidazole (Mtz) into an interstrand DNA cross-linker. A visually mediated behavioral assay and immunohistochemistry were used to determine the effects of Mtz on the vision and retinas of XOPNTR F1 tadpoles. NTR expression was detected only in the rods of XOPNTR tadpoles. Mtz treatment resulted in rapid vision loss and near complete ablation of rod photoreceptors by day 12. Müller glial cell hypertrophy and progressive cone degeneration followed rod cell ablation. When animals were allowed to recover, new rods were born and formed outer segments. The initial secondary cellular changes detected in the rodless tadpole retina mimic those observed in other models of retinal degeneration. The rapid and synchronous rod loss in XOPNTR animals suggested this model may prove useful in the study of retinal degeneration. Moreover, the regenerative capacity of the Xenopus retina makes these animals a valuable tool for identifying the cellular and molecular mechanisms at work in lower vertebrates with the remarkable capacity of retinal regeneration.

PubMed ID: 20720220
PMC ID: PMC3053286
Article link: Invest Ophthalmol Vis Sci.
Grant support: EY015748 NEI NIH HHS , EY017964 NEI NIH HHS , P40 OD010997 NIH HHS , R01 EY015748 NEI NIH HHS , R01 EY017964 NEI NIH HHS

Genes referenced: gnat1 ntsr1 rho

Antibodies referenced: Gnat1 Ab1

External Resources:

Aleman, 2008, Pubmed[+]

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556