Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-428
Brain Res. May 4, 2006; 1087 (1): 41-51.

The coding sequence of amyloid-beta precursor protein APP contains a neural-specific promoter element.

Collin RW , Martens GJ .


Abstract
The amyloid-beta precursor protein APP is generally accepted to be involved in the pathology of Alzheimer''s disease. Since its physiological role is still unclear, we decided to study the function of APP via stable transgenesis in the amphibian Xenopus laevis. However, the application of constructs encoding (mutant) APP fused to the C-terminus of the green fluorescent protein GFP (GFP-APP), and harboring a tissue-specific or an inducible gene promoter did not result in transgene expression of APP in neuronal and neuroendocrine cells. Surprisingly, a construct encoding either Xenopus or human APP fused to the N-terminus of GFP (APP-GFP) gave fluorescence throughout the whole brain of the tadpole, despite the fact that a proopiomelanocortin gene promoter was used to target transgene expression specifically to the intermediate pituitary cells. Detailed analysis with deletion mutants revealed the presence of a neural-specific, transcriptionally active DNA element within the 3''-end of the APP-coding sequence that gave rise to an aberrant transcript and protein in the APP-GFP transgenic animals. The DNA element appears to prevent proper APP transgene expression in Xenopus neuronal and neuroendocrine cells. Thus, the coding sequences of Xenopus and human APP contain a neural-specific promoter element, the physiological significance of which is at present unclear.

PubMed ID: 16626649
Article link: Brain Res.

Genes referenced: app pomc
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556