Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-43003
J Membr Biol 2011 May 01;2411:21-9. doi: 10.1007/s00232-011-9359-5.
Show Gene links Show Anatomy links

Penetratin peptide potentiates endogenous calcium-activated chloride currents in Xenopus oocytes.

Kanjhan R , Bellingham MC .


???displayArticle.abstract???
Calcium-activated chloride currents (CaCCs) are required for epithelial electrolyte and fluid secretion, fertilization, sensory transduction and excitability of neurons and smooth muscle. Defolliculated Xenopus oocytes express a robust CaCC formed by a heterologous group of proteins including transmembrane protein 16A (TMEM16A) and bestrophins. Penetratin, a 17-amino acid peptide, potentiated endogenous oocyte CaCCs by ~50-fold at 10 μM, recorded using a two-electrode voltage clamp. CaCC potentiation was rapid and dose-dependent (EC50=3.2 μM). Penetratin-potentiated currents reversed at -18 mV and were dependent on the extracellular divalent cations present, showing positive regulation by Ca2+ and Mg2+ but effective block by Zn2+ (IC50=5.9 μM). Extracellular Cd2+, Cu2+ and Ba2+ resulted in bimodal responses: CaCC inhibition at low but potentiation at high concentrations. Intracellular BAPTA injection, which prevents activation of CaCCs, and the Cl- channel blockers niflumic acid and DIDS significantly reduced potentiation. In contrast, the K+ channel blockers Cs+, TEA, tertiapin-Q and halothane had no significant effect. This pharmacological profile is consistent with penetratin potentiation of zinc-sensitive CaCCs that are activated by influx of extracellular Ca2+. These findings may stimulate basic research on CaCCs in native cells and may lead to development of novel therapeutics targeting disorders caused by insufficient chloride secretion.

???displayArticle.pubmedLink??? 21442407
???displayArticle.link??? J Membr Biol


Species referenced: Xenopus laevis
Genes referenced: clca1.3

References [+] :
Barish, A transient calcium-dependent chloride current in the immature Xenopus oocyte. 1983, Pubmed, Xenbase