Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-43648
Biochem Biophys Res Commun August 19, 2011; 412 (1): 170-4.

Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning.

Ma P , Zhao S , Zeng W , Yang Q , Li C , Lv X , Zhou Q , Mao B .


Abstract
The evolutionarily conserved Dbx homeodomain-containing proteins play important roles in the development of vertebrate central nervous system. In mouse, Dbx and Nkx6 have been suggested to be cross-repressive partners involved in the patterning of ventral neural tube. Here, we have isolated Xenopus Dbx2 and studied its developmental expression and function during neural development. Like XDbx1, from mid-neurula stage on, XDbx2 is expressed in stripes between the primary motoneurons and interneurons. At the tailbud stages, it is detected in the middle region of the neural tube. XDbx2 acts as a transcriptional repressor in vitro and over-expression of XDbx2 inhibits primary neurogenesis in Xenopus embryos. Over-expression of XDbx genes represses the expression of XNkx6.2 and vise versa. Knockdown of either XDbx1, XDbx2 or both by specific morpholinos induces lateral expansion of XNkx6.2 expression domains. These data reveal conserved roles for Dbx in primary neurogenesis and dorsoventral neural patterning in Xenopus.

PubMed ID: 21806971
Article link: Biochem Biophys Res Commun

Genes referenced: dbx1 dbx2 isl1 nkx6-1 nkx6-2 tubb2b
Morpholinos: dbx1 MO1 dbx2 MO1


Article Images: [+] show captions


Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556