Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
PLoS One. January 7, 2011; 6 (1): e16299.

The role of histone H4 biotinylation in the structure of nucleosomes.

Filenko NA , Kolar C , West JT , Smith SA , Hassan YI , Borgstahl GE , Zempleni J , Lyubchenko YL .

Post-translational modifications of histones play important roles in regulating nucleosome structure and gene transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation. To test this hypothesis we used atomic force microscopy to directly analyze structures of nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant (p<0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the classical 147 bp length of nucleosomal DNA. The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the effects of various epigenetic modifications of nucleosomes, in addition to biotinylation.

PubMed ID: 21298003
PMC ID: PMC3029316
Article link: PLoS One.
Grant support: DK063945 NIDDK NIH HHS , DK077816 NIDDK NIH HHS , DK082476 NIDDK NIH HHS , P30CA036727 NCI NIH HHS , R21 DK082476 NIDDK NIH HHS , P30 CA036727 NCI NIH HHS , R01 DK063945 NIDDK NIH HHS , R01 DK077816 NIDDK NIH HHS

Genes referenced: hist1h4d

External Resources:
Article Images: [+] show captions

Bao, 2011, Pubmed[+]

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556