Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
J Biomol Screen February 1, 2012; 17 (2): 204-15.

Virtual screening against acetylcholine binding protein.

Utsintong M , Rojsanga P , Ho KY , Talley TT , Olson AJ , Matsumoto K , Vajragupta O .

The nicotinic acetylcholine receptors (nAChRs) are a member of the ligand-gated ion channel family and play a key role in the transfer of information across neurological networks. The X-ray crystal structure of agonist-bound α(7) acetylcholine binding protein (AChBP) has been recognized as the most appropriate template to model the ligand-binding domain of nAChR for studying the molecular mechanism of the receptor-ligand interactions. Virtual screening of the National Cancer Institute diversity set, a library of 1990 compounds with nonredundant pharmacophore profiles, using AutoDock against AChBPs revealed 51 potential candidates. In vitro radioligand competition assays using [(3)H] epibatidine against the AChBPs from the freshwater snails, Lymnaea stagnalis, and from the marine species, Aplysia californica and the mutant (AcY55W), revealed seven compounds from the list of candidates that had micromolar to nanomolar affinities for the AChBPs. Further investigation on α(7)nAChR expressing in Xenopus oocytes and on the recombinant receptors with fluorescence resonance energy transfer (FRET)-based calcium sensor expressing in HEK cells showed that seven compounds were antagonists of α(7)nAChR, only one compound (NSC34352) demonstrated partial agonistic effect at low dose (10 µM), and two compounds (NSC36369 and NSC34352) were selective antagonists on α(7)nAchR with moderate potency. These hits serve as novel templates/scaffolds for development of more potent and specific in the AChR systems.

PubMed ID: 21956172
PMC ID: PMC4762448
Article link: J Biomol Screen
Grant support: [+]

References [+] :
Arias, Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. 2009, Pubmed