Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-44179
Trends Genet December 1, 2011; 27 (12): 507-15.

Xenopus research: metamorphosed by genetics and genomics.



Abstract
Research using Xenopus takes advantage of large, abundant eggs and readily manipulated embryos in addition to conserved cellular, developmental and genomic organization with mammals. Research on Xenopus has defined key principles of gene regulation and signal transduction, embryonic induction, morphogenesis and patterning as well as cell cycle regulation. Genomic and genetic advances in this system, including the development of Xenopus tropicalis as a genetically tractable complement to the widely used Xenopus laevis, capitalize on the classical strengths and wealth of achievements. These attributes provide the tools to tackle the complex biological problems of the new century, including cellular reprogramming, organogenesis, regeneration, gene regulatory networks and protein interactions controlling growth and development, all of which provide insights into a multitude of human diseases and their potential treatments.

PubMed ID: 21963197
PMC ID: PMC3601910
Article link: Trends Genet
Grant support: [+]

References [+] :
Abu-Daya, Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. 2009, Pubmed, Xenbase


Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556