Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-44250
Cell Calcium. May 1, 2011; 49 (5): 331-40.

Role of IP₃ receptor in development.



Abstract
IP₃ receptor is a Ca(2+) release channel localized on the endoplasmic reticulum. IP(3) receptor is composed of three isoforms, which are expressed in various cells and tissues, and play variety of roles throughout development. I here describe the role of IP₃ receptor from oogenesis, meiotic maturation and fertilization. I also describe the Ca(2+) signaling at meiosis and mitosis, and especially the role in early embryogenesis to determine dorso-ventral axis formation. Loss of function mutation of type 1 IP₃ receptor in mouse, both by gene targeting and spontaneous mutations shows severe ataxia and other phenotypes. Interestingly, double knockouts of type 1 and type 2 exhibit cardiogenesis arrest and that of type 2 and type 3 results in exocrine secretion deficit. IP₃R of Drosophila or Caenorhabditis elegans is single gene and mutation results severe phenotype of behavior. All the data described here show that IP₃Rs are essential for life and abnormality of IP(3)Rs results in severe abnormality in its structure and function of organism.

PubMed ID: 21596434
Article link: Cell Calcium.

Genes referenced:
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556