Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-44873
Dev Dyn. September 1, 2011; 240 (9): 2153-65.

Stepwise arteriovenous fate acquisition during mammalian vasculogenesis.

Chong DC , Koo Y , Xu K , Fu S , Cleaver O .


Abstract
Arteriovenous (AV) differentiation is a critical step during blood vessel formation and stabilization. Defects in arterial or venous fate lead to inappropriate fusion of vessels, resulting in damaging arteriovenous shunts. While many studies have unraveled the molecular underpinnings that drive AV fate, surprisingly, the spatiotemporal emergence of arteries and veins in mammalian embryos remains unknown. Here, we examine artery and vein specification and differentiation during vasculogenesis. We show that the first intraembryonic vessels formed are arteries, which differentiate in a stepwise manner. By contrast, veins emerge later, progressively forming after embryonic turning. In addition, we demonstrate that hemodynamic flow is not required for arterial specification, but is required for maintenance of select arterial markers. Together, our results provide a first spatiotemporal analysis of mammalian AV cell fate establishment and anatomy, as well as a delineation of a molecular toolkit for analysis of arteries and veins during early vessel development.

PubMed ID: 21793101
PMC ID: PMC3192916
Article link:
Grant support: DK079862 NIDDK NIH HHS

Genes referenced:
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556