Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Methods Mol Biol. January 1, 2012; 833 351-71.

Preparation of nucleosomes containing a specific H2A-H2A cross-link forming a DNA-constraining loop structure.

Liu N , Hayes JJ .

ATP-dependent chromatin-remodeling complexes use the energy of ATP hydrolysis to alter nucleosome structure, increase the accessibility of trans-acting factors, and induce nucleosome movement on the nucleosomal DNA. Recent studies suggest that bulge propagation is a major component of the mechanism for SWI/SNF remodeling. We describe in detail a method to prepare a mononucleosomal substrate in which the two H2A N-terminal tails are cross-linked in an intranucleosomal fashion, forming a closed loop around the two superhelical winds of DNA. This substrate is useful for researchers who wish to test processes in which the DNA is transiently or permanently lifted off the histone surface, such as in the bulge propagation model. Our method allows assessment of the extent of cross-linking within the population of nucleosomes used in small-scale experiments, such as assays to test SWI/SNF-remodeling activities.

PubMed ID: 22183604
Article link: Methods Mol Biol.
Grant support: R01 GM052426 NIGMS NIH HHS

Genes referenced: hist2h2ab

External Resources:

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556