Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-4517
Brain Res 2003 Nov 21;9911-2:71-7. doi: 10.1016/j.brainres.2003.08.005.
Show Gene links Show Anatomy links

Combinatorial mutations in loops D and F strongly influence responses of the alpha7 nicotinic acetylcholine receptor to imidacloprid.

Shimomura M , Yokota M , Okumura M , Matsuda K , Akamatsu M , Sattelle DB , Komai K .


???displayArticle.abstract???
The nitro group of a neonicotinoid, imidacloprid, plays a key role in its selective actions on insect nicotinic acetylcholine receptors (nicotinic AChRs) and is postulated to bind close to residues Q79 in loop D and G189 in loop F of the chicken alpha7 nicotinic AChR. To evaluate the relative contributions of these residues to interactions with imidacloprid, Q79 and G189 were replaced in tandem by first basic then acidic residues. Changes in the currents evoked by imidacloprid and acetylcholine (ACh) on the alpha7 wild type and mutant receptors expressed in Xenopus laevis oocytes were investigated using two-electrode voltage clamp electrophysiology. An increase in the efficacy of imidacloprid for the alpha7 receptor resulting from the Q79K and Q79R mutations was suppressed by a G189E mutation in loop F. However, the increases in efficacy resulting from such Q79 mutations were scarcely influenced by a G189D substitution. Three-dimensional modeling of the alpha7 nicotinic AChR, based on the acetylcholine-binding protein (AChBP) of Lymnaea stagnalis, suggests that the reduced efficacy of imidacloprid following the G189E mutation is likely to result from carboxylate interference with the electronic interactions between the nitro group of imidacloprid and the basic residues in loop D.

???displayArticle.pubmedLink??? 14575878
???displayArticle.link??? Brain Res