Due to necessary maintenance, Xenbase will be unavailable December 24-30, 2014. We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-46170
Proc Natl Acad Sci U S A. August 14, 2012; 109 (33): 13440-5.

Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents.

Tóth B , Csanády L .


Abstract
The Ca(2+)-permeable cation channel transient receptor potential melastatin 2 (TRPM2) plays a key role in pathogen-evoked phagocyte activation, postischemic neuronal apoptosis, and glucose-evoked insulin secretion, by linking these cellular responses to oxidative stress. TRPM2 channels are coactivated by binding of intracellular ADP ribose and Ca(2+) to distinct cytosolically accessible sites on the channels. These ligands likely regulate the activation gate, conserved in the voltage-gated cation channel superfamily, that comprises a helix bundle formed by the intracellular ends of transmembrane helix six of each subunit. For several K(+) and TRPM family channels, activation gate opening requires the presence of phosphatidylinositol-bisphosphate (PIP(2)) in the inner membrane leaflet. Most TRPM family channels inactivate upon prolonged stimulation in inside-out patches; this "rundown" is due to PIP(2) depletion. TRPM2 currents also run down within minutes, but the molecular mechanism of this process is unknown. Here we report that high-affinity PIP(2) binding regulates Ca(2+) sensitivity of TRPM2 activation. Nevertheless, TRPM2 inactivation is not due to PIP(2) depletion; rather, it is state dependent, sensitive to permeating ions, and can be completely prevented by mutations in the extracellular selectivity filter. Introduction of two negative charges plus a single-residue insertion, to mimic the filter sequence of TRPM5, results in TRPM2 channels that maintain unabated maximal activity for over 1 h, and display altered permeation properties but intact ADP ribose/Ca(2+)-dependent gating. Thus, upon prolonged stimulation, the TRPM2 selectivity filter undergoes a conformational change reminiscent of that accompanying C-type inactivation of voltage-gated K(+) channels. The noninactivating TRPM2 variant will be invaluable for gating studies.

PubMed ID: 22847436
PMC ID: PMC3421201
Article link: Proc Natl Acad Sci U S A.
Grant support: Howard Hughes Medical Institute

Genes referenced: ins trpm2 trpm5
Antibodies referenced:
Morpholinos referenced:

My Xenbase: [ Log-in / Register ]
version: [3.3.1]


Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556