Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-46339
Cell Physiol Biochem 2012 Jan 01;304:1039-50. doi: 10.1159/000341480.
Show Gene links Show Anatomy links

Downregulation of Kv1.5 K channels by the AMP-activated protein kinase.

Mia S , Munoz C , Pakladok T , Siraskar G , Voelkl J , Alesutan I , Lang F .


???displayArticle.abstract???
BACKGROUND: The voltage gated K(+) channel Kv1.5 participates in the repolarization of a wide variety of cell types. Kv1.5 is downregulated during hypoxia, which is known to stimulate the energy-sensing AMP-activated serine/threonine protein kinase (AMPK). AMPK is a powerful regulator of nutrient transport and metabolism. Moreover, AMPK is known to downregulate several ion channels, an effect at least in part due to stimulation of the ubiquitin ligase Nedd4- 2. The present study explored whether AMPK regulates Kv1.5. METHODS: cRNA encoding Kv1.5 was injected into Xenopus oocytes with and without additional injection of wild-type AMPK (α1 β 1γ1), of constitutively active (γR70Q)AMPK (α1 β 1γ1(R70Q)), of inactive mutant (αK45R)AMPK (α1(K45R)β1γ1), or of Nedd4-2. Kv1.5 activity was determined by two-electrode voltage-clamp. Moreover, Kv1.5 protein abundance in the cell membrane was determined by chemiluminescence and immunostaining with subsequent confocal microscopy. RESULTS: Coexpression of wild-type AMPK(WT) and constitutively active AMPK(γR70Q), but not of inactive AMPK(αK45R) significantly reduced Kv1.5-mediated currents. Coexpression of constitutively active AMPKγR70Q further reduced Kv1.5 K(+) channel protein abundance in the cell membrane. Co-expression of Nedd4-2 similarly downregulated Kv1.5-mediated currents. CONCLUSION: AMPK is a potent regulator of Kv1.5. AMPK inhibits Kv1.5 presumably in part by activation of Nedd4- 2 with subsequent clearance of channel protein from the cell membrane.

???displayArticle.pubmedLink??? 23221389
???displayArticle.link??? Cell Physiol Biochem


Species referenced: Xenopus
Genes referenced: kcna5 nedd4 prkaa1