Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Biophys J. July 3, 2012; 103 (1): 48-58.

Force-dependent detachment of kinesin-2 biases track switching at cytoskeletal filament intersections.

Schroeder HW , Hendricks AG , Ikeda K , Shuman H , Rodionov V , Ikebe M , Goldman YE , Holzbaur EL .

Intracellular trafficking of organelles often involves cytoskeletal track switching. Organelles such as melanosomes are transported by multiple motors including kinesin-2, dynein, and myosin-V, which drive switching between microtubules and actin filaments during dispersion and aggregation. Here, we used optical trapping to determine the unitary and ensemble forces of kinesin-2, and to reconstitute cargo switching at cytoskeletal intersections in a minimal system with kinesin-2 and myosin-V motors bound to beads. Single kinesin-2 motors exerted forces up to ∼5 pN, similar to kinesin-1. However, kinesin-2 motors were more likely to detach at submaximal forces, and the duration of force maintenance was short as compared to kinesin-1. In multimotor assays, force increased with kinesin-2 density but was not affected by the presence of myosin-V. In crossed filament assays, switching frequencies of motor-bound beads were dependent on the starting track. At equal average forces, beads tended to switch from microtubules onto overlying actin filaments consistent with the relatively faster detachment of kinesin-2 at near-maximal forces. Thus, in addition to relative force, switching probability at filament intersections is determined by the dynamics of motor-filament interaction, such as the quick detachment of kinesin-2 under load. This may enable fine-tuning of filament switching in the cell.

PubMed ID: 22828331
PMC ID: PMC3388211
Article link: Biophys J.
Grant support: GM062290 NIGMS NIH HHS , GM071339 NIGMS NIH HHS , GM087253 NIGMS NIH HHS , GM089077 NIGMS NIH HHS , R01 GM062290 NIGMS NIH HHS , F32 GM089077 NIGMS NIH HHS , P01 GM087253 NIGMS NIH HHS , T32 GM071339 NIGMS NIH HHS , R01 HL073050 NHLBI NIH HHS

Genes referenced: actl6a

External Resources:

Al-Haddad, 2001, Pubmed[+]

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.9.0
Major funding for Xenbase is provided by the National Institute of Child Health and Human Development, grant P41 HD064556