Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-46537
PLoS One January 1, 2012; 7 (12): e52439.

Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco.

Zhou S , Hu W , Deng X , Ma Z , Chen L , Huang C , Wang C , Wang J , He Y , Yang G , He G .


Abstract
Aquaporin (AQP) proteins have been shown to transport water and other small molecules through biological membranes, which is crucial for plants to combat stress caused by drought. However, the precise role of AQPs in drought stress response is not completely understood in plants. In this study, a PIP2 subgroup gene AQP, designated as TaAQP7, was cloned and characterized from wheat. Expression of TaAQP7-GFP fusion protein revealed its localization in the plasma membrane. TaAQP7 exhibited high water channel activity in Xenopus laevis oocytes and TaAQP7 transcript was induced by dehydration, and treatments with polyethylene glycol (PEG), abscisic acid (ABA) and H(2)O(2). Further, TaAQP7 was upregulated after PEG treatment and was blocked by inhibitors of ABA biosynthesis, implying that ABA signaling was involved in the upregulation of TaAQP7 after PEG treatment. Overexpression of TaAQP7 increased drought tolerance in tobacco. The transgenic tobacco lines had lower levels of malondialdehyde (MDA) and H(2)O(2), and less ion leakage (IL), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities when compared with the wild type (WT) under drought stress. Taken together, our results show that TaAQP7 confers drought stress tolerance in transgenic tobacco by increasing the ability to retain water, reduce ROS accumulation and membrane damage, and enhance the activities of antioxidants.

PubMed ID: 23285044
PMC ID: PMC3527513
Article link: PLoS One


Species referenced: Xenopus
Genes referenced: cat.1 cat.2 sod1


Article Images: [+] show captions
References [+] :
, A simple and general method for transferring genes into plants. 2010, Pubmed